求∫cxdx=∫dx/ cosx的积分
1个回答
2023-01-08
展开全部
解:∫cscxdx=∫dx/sinx=∫sinxdx/(sinx)^2(分子分母同时乘以sinx)=∫d(cosx)/[1-(cosx)^2](凑微分)=0.5ln|(1-cosx)/(1+cosx)|+C(利用积分公式∫dx/(1-x^2)=0.5ln|(1-x)/(1+x)|+C)=ln|(sin0.5x)/(cos0.5x)|+C(二倍角余弦公式)=ln|tan0.5x|+C=ln|(1-cosx)/sinx|+C(半角正切公式)=ln|cscx-cotx|+C(C为常数)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询