向量的点乘和叉乘
2个回答
展开全部
点乘,也叫数量积。结果是一个向量在另一个向量方向上投影的长度,是一个标量。叉乘,也叫向量积。结果是一个和已有两个向量都垂直的向量。
点乘和叉乘的区别点乘是向量的内积,叉乘是向量的外积。点乘:点乘的结果是一个实数a·b=|a|·|b|·cos<a,b<a,b表示a,b的夹角叉乘:叉乘的结果是一个向量。
几何意义:点乘的几何意义;可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影。叉乘的几何意义:在三维几何中,向量a和向量b的叉乘结果是一个向量,更为熟知的叫法是法向量,该向量垂直于a和b向量构成的平面。在3D图像学中,叉乘的概念非常有用,可以通过两个向量的叉乘,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。
叉乘和点乘的运算法则:点乘,也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。向量a·向量b=|a||bcos。
点乘和叉乘的区别点乘是向量的内积,叉乘是向量的外积。点乘:点乘的结果是一个实数a·b=|a|·|b|·cos<a,b<a,b表示a,b的夹角叉乘:叉乘的结果是一个向量。
几何意义:点乘的几何意义;可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影。叉乘的几何意义:在三维几何中,向量a和向量b的叉乘结果是一个向量,更为熟知的叫法是法向量,该向量垂直于a和b向量构成的平面。在3D图像学中,叉乘的概念非常有用,可以通过两个向量的叉乘,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。
叉乘和点乘的运算法则:点乘,也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。向量a·向量b=|a||bcos。
展开全部
点乘,也叫数量积。结果是一个向量在另一个向量方向上投影的长度,是一个标量。
叉乘,也叫向量积。结果是一个和已有两个向量都垂直的向量(法向量)。
点乘在数学中一般用来判断两个向量是否垂直。也可以用来计算一个向量在某个方向上的投影长度,就像定义一样。
叉乘更多的是判断某个平面的方向。从这个平面上选两个不共线的向量,叉乘的结果就是这个平面的法向量。
几何意义
点乘的几何意义:可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影。
叉乘的几何意义:在三维几何中,向量a和向量b的叉乘结果是一个向量,更为熟知的叫法是法向量,该向量垂直于a和b向量构成的平面。
在3D图像学中,叉乘的概念非常有用,可以通过两个向量的叉乘,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询