设A,B为n阶逆矩阵,求证(A+E)^2=A^2+2A+E 我来答 1个回答 #合辑# 机票是越早买越便宜吗? 华源网络 2022-09-03 · TA获得超过5599个赞 知道小有建树答主 回答量:2486 采纳率:100% 帮助的人:148万 我也去答题访问个人页 关注 展开全部 (A+E)^2=(A+E)(A+E)=A^2+AE+EA+E^2=A^2+2A+E 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2022-09-25 27.设n阶矩阵A满足A2=A,证明E-2A可逆,且(E-2A)-1=E-2A.? 2022-09-11 27.设n阶矩阵A满足A2=A,证明E-2A可逆,且(E-2A)-1=E-2A. 1 2022-07-27 设N阶矩阵A满足A^2=A,证明E-2A可逆,且(E-2A)^-1=E-2A.求证明过程. 2022-10-03 设N阶矩阵A满足A^2=A,证明E-2A可逆,且(E-2A)^-1=E-2A.求证明过程. 2022-08-24 已知N阶可逆矩阵A满足2A(A-E)=A^3,求(E-A)^(-1) 2022-07-14 设A为n阶方阵,A*A-2A-2E=0,求(A+E)的逆矩阵 2022-11-16 设A为n阶方阵,A*A-2A-2E=0,求(A-E)的逆矩阵 2022-07-01 若n阶矩阵满足A^2+2A-4E=0,试证A+E可逆,并求(A+E)^-1 为你推荐: