三角形内角和180度的证明方法

 我来答
惠企百科
2022-09-28 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部

作BC的延长线CD,过点C作CE∥BA

则∠1=∠A,∠2=∠B

又∵∠1+∠2+∠ACB=180°

∴∠A+∠B+∠ACB=180°


扩展资料:

任意n边形的内角和公式为θ=180°·(n-2)。其中,θ是n边形内角和,n是该多边形的边数。从多边形的一个顶点连其他的顶点可以将此多边形分成(n-2)个三角形,每个三角形内角和为180°,故,任意n边形内角和的公式是:θ=(n-2)·180°,∀n=3,4,5,…。

三角形是指平面三角形,处于平直空间中。当三角形处于黎曼几何空间中时,内角和不一定为180°。例如,在罗巴契夫斯基几何(罗氏几何)中,内角和小于180°;而在黎曼几何时,内角和大于180°。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式