可能极值点有哪几种?
2022-12-11 · 百度认证:北京惠企网络技术有限公司官方账号
极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在)。
判断是否为极值点的原则:看驻点(不可导点)的左右,函数的增减性有无变化,有就是极值点,无就不是。
如:f(x)=x³ 驻点x=0 ,但f'(x)=3x²≥0 f(x)全R域单调递增,x=0,不是极值点。
f(x)=|x| 不可导点 x=0 ,该点左侧f(x)单减,右侧单增,x=0是极小值点。
极值点不一定是驻点,驻点也不一定是极值点。还是拿y=|x|来举例,当x=0时,这就是它的极值点,因为此时的函数在x=0处时,左右两边的单调性不一致。但它却不是驻点,理由是该函数在x=0时不可导,因此也就不存在驻点。
扩展资料
只判断是不是极大值极小值点,一般会用到两个方法。
1、极限的保号性,即一阶导数在X0的左邻域和右邻域分别是正或者负,来决定f(x)是极大值还是极小值。
2、一阶导数等于0,二阶导数大于0,则是极小值,二阶导数小于0,则是极大值。
拐点和极值点在一起判断,则一般分为两步:
(1)看题目给的几阶可导,如未给,一般是n阶可导。根据一个通用的规律:一阶导数,二阶导数,三阶导数到n-1阶导数都为0,n阶导数不为零。如果n是奇数,则该点是拐点,如果n是偶数,该点是极值点。
(2)如果判断是极值点,则回到上面判断极值的方法,判断是极大值还是极小值。