f(x)在[0,1]有连续的导数,f(0)=1,且∫∫f'(x+y)dxdy=∫∫f(t)dxdy,积分区域Dt={(x,y)|0

 我来答
户如乐9318
2022-09-13 · TA获得超过6666个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:140万
展开全部
∫∫f(t)dxdy=f(t)∫∫dxdy=t^2f(t)/2∫∫f'(x+y)dxdy=∫(0,t)dv∫(0,t)f'(u)du=∫(0,t)(f(t)-1)dv=t(f(t)-1)由t(f(t)-1)=t^2f(t)/2得:f(t)-1=tf(t)/2f(t)=2/(2-t)f(x)=2/(2-x) (0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式