共面向量基本定理
1个回答
展开全部
共面向量定理是能平移到同一平面上的三个向量叫做共面向量。
共面向量定理是数学学科的基本定理之一。属于高中数学立体几何的教学范畴。主要用于证明两个向量共面,进而证明面面垂直等一系列复杂问题。
共面定理得内容为:如果两个向量a、b不共线,则向量p与向量a、b共面的充要条件是存在有序实数对(x,y),使p=xa+yb。
推论:
共面向量是一组有特殊位置关系的向量,即平行于同一个平面的一组向量、零向量与任何一组共面的向量共面,设O、A、B、C是不共面的四点,则对空间任意一点P,都存在唯一的有序实数组(x,y,z)。
空间任一点P位于平面MAB内的充要条件是:存在有序实数对{x.y},使MP=xMA+yMB或对空间任一定点O,有OP=OM+xMA+yMB。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询