已知xy为正数,且x+4y=1,求1/x+1/y的最小值
1个回答
展开全部
因为(x+4y)=1,所以二者相乘
1/x+1/y=(x+4y)(1/x+1/y)
展开得1/x+1/y=5+x/y+4y/x,
用基本不等式,1/x+1/y=5+x/y+4y/x >= sqrt(x/y × 4y/x)+5 =9(满足一正、二定、三相等)
所以1/x+1/y最小值为9
1/x+1/y=(x+4y)(1/x+1/y)
展开得1/x+1/y=5+x/y+4y/x,
用基本不等式,1/x+1/y=5+x/y+4y/x >= sqrt(x/y × 4y/x)+5 =9(满足一正、二定、三相等)
所以1/x+1/y最小值为9
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询