若sinα=4/5 ,tan(α+β)=1且α是第二象限角,则tanβ=

heanmen
2010-12-21 · TA获得超过1.7万个赞
知道大有可为答主
回答量:4283
采纳率:100%
帮助的人:2623万
展开全部
解:∵sinα=4/5,α是第二象限角
∴cosα=-√(1-sin²α)=-3/5
∴tanα=sinα/cosα=(4/5)/(-3/5)=-4/3
又tan(α+β)=1
故tanβ=tan[(α+β)-α]
=[tan(α+β)-tanα]/[1+tan(α+β)*tanα] (应用正切差角公式)
=[1-(-4/3)]/[1+1*(-4/3)]
=-7。
百度网友8a2f1b5e0
2010-12-21 · TA获得超过2.5万个赞
知道大有可为答主
回答量:1.4万
采纳率:89%
帮助的人:2758万
展开全部
tana=-4/3
tan[b]=tan[(a+b)-a]=(tan(a+b)-tana)/(1+tan(a+b)tana]=(1+4/3)/(1+1*(-4/3)]=-7
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式