正弦函数公式是怎样的?

 我来答
社无小事
高能答主

2023-01-17 · 游戏也是生活的态度。
社无小事
采纳数:2168 获赞数:20418

向TA提问 私信TA
展开全部

三角恒等变换公式如下:

1、二倍角公式:

sin(2α)=2sinα·cosα

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

2、三倍角公式:

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

3、半角公式:

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

4、万能公式:

半角的正弦、余弦和正切公式(降幂扩角公式)

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

5、积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

6、和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

三角函数的起源:

早期对于三角函数的研究可以追溯到古代,古希腊三角术的奠基人是公元前2世纪的喜帕恰斯,他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同),对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。

喜帕恰斯实际上给出了最早的三角函数数值表,然而古希腊的三角学基本是球面三角学,这与古希腊人研究的主体是天文学有关,梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理。

古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》(Syntaxis Mathematica)中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法,托勒密还给出了所有0到180度的所有整数和半整数弧度对应的正弦值。

教育解题珊
2023-01-18
知道答主
回答量:11
采纳率:0%
帮助的人:2739
展开全部
正弦函数,又称曲线极值函数、周期函数,是数学分析中的一种函数,在物理、工程学等领域也都有着广泛的应用。它的函数图像是一种圆周_上的曲线(也称涟漪),因此也被称为sin曲线。正弦函数函数表达式为: y=Asin(wx+q), 其中A、W、φ分别表示正弦函数的振幅、角频率和相位差。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式