爱因斯坦引力场方程
展开全部
爱因斯坦引力场方程为:R_uv-1/2*R*g_uv=κ*T_uv。
引力场方程是指描述引力场的时空几何量,作为引力场源的物质能量动量张量的方程。这个方程反映了爱因斯坦的马赫原理的思想。
爱因斯坦的引力场方程是一个二阶非线性偏微分方程组,数学上想要求得方程的解是一件非常困难的事。爱因斯坦运用了很多近似方法,从引力场方程得出了很多最初的预言。
场方程为非线性的。
爱因斯坦场方程的非线性特质使得广义相对论与其他物理学理论迥异。举例来说,电磁学的麦克斯韦方程组跟电场、磁场以及电荷、电流的分布是呈线性关系(亦即两个解的线性叠加仍然是一个解)。另个例子是量子力学中的薛定谔方程,对于概率波函数也是线性的。而场方程,对于待求量度规张量的二阶导数是线性的,对度规的一阶导数却是二次的。
对应原理
透过弱场近似以及慢速近似,可以从爱因斯坦场方程退化为牛顿重力定律。事实上,场方程中的比例常数是经过这两个近似,跟牛顿重力理论比较后得出。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询