二元函数的极值与条件极值的几何意义是什么?若二元函数无极值,是否一定无条件极值?举例说明。
2个回答
展开全部
二元函数的极值的几何意义是:如果函数f的图形在极大值点或极小值点有一个切平面,则切平面必为水平。
条件极值的几何意义要结合函数f和限定条件才好确定,我手上现在的一本教材上面给了这样一个例子,z=x^2+2y^2在限制条件x^2+y^2=1下的极值,前者是抛物面,后者是在xy平面的一个圆,想象一个过圆的圆柱与抛物面相交得出一条曲线,此曲线的最高点和最低点即为条件极值点。
关于二元函数的驻点不是极值点一个例子是双曲抛物面的鞍点,函数为z=y^2-x^2,呈马鞍状,沿着x轴方向(y=0),(0,0)点为极大值点,沿着y轴方向恰好相反为极小值点。
用上面这个函数在限定条件x^2+y^2=1下,可以求得条件极值。
条件极值的几何意义要结合函数f和限定条件才好确定,我手上现在的一本教材上面给了这样一个例子,z=x^2+2y^2在限制条件x^2+y^2=1下的极值,前者是抛物面,后者是在xy平面的一个圆,想象一个过圆的圆柱与抛物面相交得出一条曲线,此曲线的最高点和最低点即为条件极值点。
关于二元函数的驻点不是极值点一个例子是双曲抛物面的鞍点,函数为z=y^2-x^2,呈马鞍状,沿着x轴方向(y=0),(0,0)点为极大值点,沿着y轴方向恰好相反为极小值点。
用上面这个函数在限定条件x^2+y^2=1下,可以求得条件极值。
参考资料: 微积分 James Stewart著 白峰杉主译 高等教育出版社
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
二元函数极值,
就是在给定的定义区域内(通畅是一块儿或大或小的面积)上,每个定义域的点(x,y)对应一个函数值f(x,y)。这些所有的(x,y)的函数值放在一起成为一个值域集合,求这个集合内元素的最大值或者最小值,叫做函数极值
当给定的定义区域是整个f(x,y)的定义域的时候,值域集合取到所有值,所以极值就变成了最值。
条件极值就是给定某个条件,
比如说,(x,y)在单位圆内,这是对定义域进行限制。
再比如说,求f(x,y)^2+2f(x,y)-1这相当于偷偷的换成了g(x,y),也可以把它归到一般的极值问题。
至于你说的无极值就无条件极值,是错的,
因为极值是针对f(x,y)的,
条件极值可以改变目标函数,如我上面那个例子变成了g(x,y),这样就是新的问题了。
所以不一定。
就是在给定的定义区域内(通畅是一块儿或大或小的面积)上,每个定义域的点(x,y)对应一个函数值f(x,y)。这些所有的(x,y)的函数值放在一起成为一个值域集合,求这个集合内元素的最大值或者最小值,叫做函数极值
当给定的定义区域是整个f(x,y)的定义域的时候,值域集合取到所有值,所以极值就变成了最值。
条件极值就是给定某个条件,
比如说,(x,y)在单位圆内,这是对定义域进行限制。
再比如说,求f(x,y)^2+2f(x,y)-1这相当于偷偷的换成了g(x,y),也可以把它归到一般的极值问题。
至于你说的无极值就无条件极值,是错的,
因为极值是针对f(x,y)的,
条件极值可以改变目标函数,如我上面那个例子变成了g(x,y),这样就是新的问题了。
所以不一定。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询