概率论A、 B、 C相互独立吗?

 我来答
百度网友9fd5cf7
高粉答主

2023-06-11 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:286
采纳率:0%
帮助的人:10.5万
展开全部

不独立,也不能说明任何关系。

A、B、C相互独立的条件是:

P(AB) = P(A) P(B)

P(BC) = P(B) P(C)

P(CA) = P(C) P(A)

P(ABC) = P(A) P(B) P(C)

一共4个条件,每个都必不可少。

如果只有最后一个条件,网上有个反例,见下图:

P(A) = 0.2,P(B) = 0.4,P(C) = 0.5

P(ABC) = 0.04,符合:P(ABC) = P(A) P(B) P(C)

但是:P(AB) = 0.1,P(BC) = 0.24,P(CA) = 0.14

前3个条件都不符合。

扩展资料

概率论是一门研究事情发生的可能性的学问,但是最初概率论的起源与赌博问题有关。16世纪,意大利的学者吉罗拉莫·卡尔达诺(Girolam oCardano,1501——1576)开始研究掷骰子等赌博中的一些简单问题。

17世纪中叶,当时的法国宫廷贵族里盛行着掷骰子游戏,游戏规则是玩家连续掷 4 次骰子,如果其中没有 6 点出现,玩家赢,如果出现一次 6 点,则庄家(相当于赌场)赢。按照这一游戏规则,从长期来看,庄家扮演赢家的角色,而玩家大部分时间是输家,因为庄家总是要靠此为生的,因此当时人们也就接受了这种现象。

后来为了使游戏更刺激,游戏规则发生了些许变化,玩家这回用 2 个骰子连续掷 24 次,不同时出现2个6点,玩家赢,否则庄家赢。

当时人们普遍认为,2 次出现 6 点的概率是一次出现 6 点的概率的 1 / 6 ,因此 6 倍于前一种规则的次数,也既是 24 次赢或输的概率与以前是相等的。然而事实却刚好相反,从长期来看,这回庄家处于输家的状态,于是他们去请教当时的数学家帕斯卡,求助其对这种现象作出解释,这个问题的解决直接推动了概率论的产生。

有人对博弈中的一些问题发生争论,其中的一个问题是“赌金分配问题”,他们决定请教法国数学家帕斯卡(Pascal)和费马(Fermat)基于排列组合方法,研究了一些较复杂的赌博问题,他们解决了分赌注问题、赌徒输光问题。

他们对这个问题进行了认真的讨论,花费了3年的思考,并最终解决了这个问题,这个问题的解决直接推动了概率论的产生。 概率与统计的一些概念和简单的方法,早期主要用于赌博和人口统计模型。

随着人类的社会实践,人们需要了解各种不确定现象中隐含的必然规律性,并用数学方法研究各种结果出现的可能性大小,从而产生了概率论,并使之逐步发展成一门严谨的学科。概率与统计的方法日益渗透到各个领域,并广泛应用于自然科学、经济学、医学、金融保险甚至人文科学中。

参考资料:概率论的百度百科

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式