已知x>0,y>0,且x^2+y^2/2=1,求x根号(1+y^2)的最大值
1个回答
展开全部
设x=cosα,y=√2sinα,0<α<π/2
x√(1+y^2)=cosα√[1+2(sinα)^2]
=√[(cosα)^2+2(sinαcosα)^2]
=√{(cosα)^2+(1/2)[sin(2α)]^2}
=√{(1/2)[1+cos(2α)]+(1/2)[sin(2α)]^2}
=√(1/2)√{1+cos(2α)+[sin(2α)]^2}
=√(1/2)√{2+cos(2α)-[cos(2α)]^2}
=√(1/2)√{-[cos(2α)-1/2]^2+9/4}
0<α<π/2
0<2α<π
-1<cos(2α)<1
-3/2<cos(2α)-1/2<1/2
0≤[cos(2α)-1/2]^2<1/4或0≤[cos(2α)-1/2]^2<9/4
0≤[cos(2α)-1/2]^2<9/4
-9/4<-[cos(2α)-1/2]^2≤0
0<9/4-[cos(2α)-1/2]^2≤9/4
0<√{9/4-[cos(2α)-1/2]^2}≤3/2
0<x√(1+y^2)≤(3/2)√(1/2)
最大值(3/2)√(1/2)
x√(1+y^2)=cosα√[1+2(sinα)^2]
=√[(cosα)^2+2(sinαcosα)^2]
=√{(cosα)^2+(1/2)[sin(2α)]^2}
=√{(1/2)[1+cos(2α)]+(1/2)[sin(2α)]^2}
=√(1/2)√{1+cos(2α)+[sin(2α)]^2}
=√(1/2)√{2+cos(2α)-[cos(2α)]^2}
=√(1/2)√{-[cos(2α)-1/2]^2+9/4}
0<α<π/2
0<2α<π
-1<cos(2α)<1
-3/2<cos(2α)-1/2<1/2
0≤[cos(2α)-1/2]^2<1/4或0≤[cos(2α)-1/2]^2<9/4
0≤[cos(2α)-1/2]^2<9/4
-9/4<-[cos(2α)-1/2]^2≤0
0<9/4-[cos(2α)-1/2]^2≤9/4
0<√{9/4-[cos(2α)-1/2]^2}≤3/2
0<x√(1+y^2)≤(3/2)√(1/2)
最大值(3/2)√(1/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询