求:关于相似三角形的各类难题,越多越好。
4个回答
展开全部
三角形ABC,BC上的高与AB上的高相交于H点,连结BH交AC于D,求证:BD垂直于AC
答案
方法1:
三角形ABC中,AC、AB上的高为BE和CF。
显然三角形ABE相似于三角形ACF,故有AB/AC=AE/AF,即AF*AB=AE*AC (1)
过A作三角形ABC的高AD,分别交BE,CF,AB于O1,O2,D。
由三角形AFO2相似于三角形ADB得:AF/AO2=AD/AB,即AF*AB=AO2*AD (2)
由三角形AEO1相似于三角形ADC得:AE/AO1=AD/AC,即AE*AC=AO1*AD (3)
根据等式(1)(2)(3)有
AO1*AD=AO2*AD,
所以AO1=AO2,O1、O2重合,记重合点为O点,则O点均在高AD,BE,CF上,所以三角形ABC得三条高交于一点O。
方法2:
三角形ABC中,AC、AB上的高BE和CF交于O点,连接并延长AO交BC于D,只需证AD为高即可。
因为角BEC,角CFB均为直角,所以B、C、F、E四点共圆,记为圆BCFE,
由切割线定理知:AF*AB = AE*AC (4)
分别记直角三角形BOF,COE的外接圆为圆BOF,圆COE,
下面只需证明角BDA=90度即可,
反证:若角BDA小于90度,则角CDA大于90度,因BO,CO分别为圆BOF,圆COE的直径,所以点D在圆BOF外,在圆COE内,由切割线定理推论
AO*AD>AF*AB (点D在圆BOF外)
AO*AD<AE*AC (点D在圆COE内)
结合(4),得出矛盾,故角BDA不小于90度。
同理可证角BDA也不大于90度。
故角BDA=90度。即AD为高。
答案
方法1:
三角形ABC中,AC、AB上的高为BE和CF。
显然三角形ABE相似于三角形ACF,故有AB/AC=AE/AF,即AF*AB=AE*AC (1)
过A作三角形ABC的高AD,分别交BE,CF,AB于O1,O2,D。
由三角形AFO2相似于三角形ADB得:AF/AO2=AD/AB,即AF*AB=AO2*AD (2)
由三角形AEO1相似于三角形ADC得:AE/AO1=AD/AC,即AE*AC=AO1*AD (3)
根据等式(1)(2)(3)有
AO1*AD=AO2*AD,
所以AO1=AO2,O1、O2重合,记重合点为O点,则O点均在高AD,BE,CF上,所以三角形ABC得三条高交于一点O。
方法2:
三角形ABC中,AC、AB上的高BE和CF交于O点,连接并延长AO交BC于D,只需证AD为高即可。
因为角BEC,角CFB均为直角,所以B、C、F、E四点共圆,记为圆BCFE,
由切割线定理知:AF*AB = AE*AC (4)
分别记直角三角形BOF,COE的外接圆为圆BOF,圆COE,
下面只需证明角BDA=90度即可,
反证:若角BDA小于90度,则角CDA大于90度,因BO,CO分别为圆BOF,圆COE的直径,所以点D在圆BOF外,在圆COE内,由切割线定理推论
AO*AD>AF*AB (点D在圆BOF外)
AO*AD<AE*AC (点D在圆COE内)
结合(4),得出矛盾,故角BDA不小于90度。
同理可证角BDA也不大于90度。
故角BDA=90度。即AD为高。
参考资料: http://zhidao.baidu.com/question/126470071.html?si=3
展开全部
小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:
如示意图,小明边移动边观察,发现站到点 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点 在同一直线上).
已知小明的身高 是1.7m,请你帮小明求出楼高 (结果精确到0.1m).
如示意图,小明边移动边观察,发现站到点 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点 在同一直线上).
已知小明的身高 是1.7m,请你帮小明求出楼高 (结果精确到0.1m).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一个锐角三角形 通过它的两边各做一个正方形,连接两正方形顶点组成一三角形,引一条垂直于锐角三角形的线段。 证:此线段平分连接正方形顶点的线段。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
d
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询