已知a,b,c都是正实数,求证:1/2a+1/2b+1/2c>=1/(b+c)+1/(c+a)+1/(a+b)
展开全部
证明:首先有1/a+1/b>=4/(a+b)(这个两边同分也可以简单得到证明)
故1/a+1/b>=4/(a+b)
1/a+1/c>=4/(a+c)
1/c+1/b>=4/(c+b)
=>2/a+2/b+2/c>=4/(a+b)+4/(b+c)+4/(a+c)
=>1/(2a)+1/(2b)+1/(2c)>1/(a+b)+1/(a+c)+1/(b+c)
当且仅当a=b=c等号成立
证毕!
故1/a+1/b>=4/(a+b)
1/a+1/c>=4/(a+c)
1/c+1/b>=4/(c+b)
=>2/a+2/b+2/c>=4/(a+b)+4/(b+c)+4/(a+c)
=>1/(2a)+1/(2b)+1/(2c)>1/(a+b)+1/(a+c)+1/(b+c)
当且仅当a=b=c等号成立
证毕!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询