f'(x)=tan²(x),且 f(0)=1,求f(x)

heanmen
2010-12-23 · TA获得超过1.7万个赞
知道大有可为答主
回答量:4283
采纳率:100%
帮助的人:2592万
展开全部
解:∵f'(x)=tan²x
∴f(x)=∫tan²xdx
=∫(sec²x-1)dx
=∫sec²xdx-∫dx
=∫d(tanx)-∫dx
=tanx-x+C (C是积分常数)
∵f(0)=1
∴C=1
故f(x)=tanx-x+1。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式