2个回答
展开全部
令a=tanx
则a属于R
y=f(x)=(a²-a+1)/(a²+a+1)
ya²+ya+y=a²-a+1
(y-1)a²+(y+1)a+(y-1)=0
a是实数则方程有解
所以判别式大于等于0
(y+1)²-4(y-1)²>=0
(y+1+2y-2)(y+1-2y+2)>=0
(3y-1)(y-3)<=0
1/3<=y<=3
所以最大值=3,最小值=1/3
y=1/3
代入(y-1)a²+(y+1)a+(y-1)=0
a²-2a+1=0
a=1
x=kπ+π/4
y=3
代入(y-1)a²+(y+1)a+(y-1)=0
a²+2a+1=0
a=-1
x=kπ-π/4
所以
x=kπ-π/4,最大值=3
x=kπ+π/4,最小值=1/3
则a属于R
y=f(x)=(a²-a+1)/(a²+a+1)
ya²+ya+y=a²-a+1
(y-1)a²+(y+1)a+(y-1)=0
a是实数则方程有解
所以判别式大于等于0
(y+1)²-4(y-1)²>=0
(y+1+2y-2)(y+1-2y+2)>=0
(3y-1)(y-3)<=0
1/3<=y<=3
所以最大值=3,最小值=1/3
y=1/3
代入(y-1)a²+(y+1)a+(y-1)=0
a²-2a+1=0
a=1
x=kπ+π/4
y=3
代入(y-1)a²+(y+1)a+(y-1)=0
a²+2a+1=0
a=-1
x=kπ-π/4
所以
x=kπ-π/4,最大值=3
x=kπ+π/4,最小值=1/3
展开全部
设y= tanx,s=f(x)=(y²-y+1)/(y²+y+1),则
s(y²+y+1)=(y²-y+1),
(s-1)y²+(s+1)y+s-1=0,
这是关于y的2次方程,如果它有实根,则判别式
(s+1)^2-4(s-1)^2≥0,即(3s-1)(-s+3)≥0,解得1/3≤s≤3,
故s也即f(x)的最大值为3,最小值1/3,
当s=1/3, y²+y+1=3(y²-y+1),2y²-4y+2=0,y=1, tanx=1,x=180°k+45°
当s=3, 3(y²+y+1)=y²-y+1,2y²+4y+2=0,y=-1, tanx=-1,x=180°k-45°
故f(x)的最大值为3,最小值1/3,此时对应的x分别为x=180°k-45°和x=180°k+45°。
s(y²+y+1)=(y²-y+1),
(s-1)y²+(s+1)y+s-1=0,
这是关于y的2次方程,如果它有实根,则判别式
(s+1)^2-4(s-1)^2≥0,即(3s-1)(-s+3)≥0,解得1/3≤s≤3,
故s也即f(x)的最大值为3,最小值1/3,
当s=1/3, y²+y+1=3(y²-y+1),2y²-4y+2=0,y=1, tanx=1,x=180°k+45°
当s=3, 3(y²+y+1)=y²-y+1,2y²+4y+2=0,y=-1, tanx=-1,x=180°k-45°
故f(x)的最大值为3,最小值1/3,此时对应的x分别为x=180°k-45°和x=180°k+45°。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询