判断级数∑tan1/√n的敛散性,要详细过程,谢谢~
2个回答
展开全部
1/√n>1/n
∑1/n发散则∑1/√n发散
数列{q}n≥1,当|q|<1及q=1时,分别收敛于0与1;当q≤-1时,不定向发散;当q>1时,定向发散于+∞。
关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。
收敛的定义方式很好的体现了数学分析的精神实质。
扩展资料
函数项级数(1)的收敛点的全体称为他的收敛域,发散点的全体称为他的发散域对应于收敛域内任意一个数x,函数项级数称为一收敛的常数项 级数,因而有一确定的和s。
这样,在收敛域上 ,函数项级数的和是x的函数S(x),通常称s(x)为函数项级数的和函数,这函数的定义域就是级数的收敛域,并写成S(x)=u1(x)+u2(x)+u3(x)+......+un(x)+......把函数项级数 ⑴ 的前n项部分和 记作Sn(x),则在收敛域上有lim n→∞Sn(x)=S(x)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询