不定积分∫(x^2-1)/(x^4+1)dx计算具体过程
4个回答
展开全部
分子分母除于x²,然后注意到分子变为 1-1/x²=(x+1/x)'
然后令u=x+1/x,可以得到答案
参考资料中有详细过程
然后令u=x+1/x,可以得到答案
参考资料中有详细过程
参考资料: http://www.duodaa.com/view.aspx?id=190
展开全部
对被积函数分子分母同时除以x^2,得
原式=∫[1-(1/x^2)]/[x^2+(1/x^2)]dx
=∫1/{[x+(1/x)]^2-2}d[x+(1/x)]
【凑微分法】
=[(√2)/4]ln|[x+(1/x)-√2]/[x-(1/x)+√2]|+C
【常用公式】
=[(√2)/4]ln|[x^2-√2x+1]/[x^2+√2x+1]|+C
原式=∫[1-(1/x^2)]/[x^2+(1/x^2)]dx
=∫1/{[x+(1/x)]^2-2}d[x+(1/x)]
【凑微分法】
=[(√2)/4]ln|[x+(1/x)-√2]/[x-(1/x)+√2]|+C
【常用公式】
=[(√2)/4]ln|[x^2-√2x+1]/[x^2+√2x+1]|+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
好多都忘了,应该是(x^2-1)/(x^4+1)
=x^2/(x^4+1)-1/(x^4+1)
=1/(x^2+1/x^2)-1/(x^4+1)
=(x^2+1/x^2)的-1次方-(x^4+1)的-1次方
现在减号两边积分,你看行不行。
=x^2/(x^4+1)-1/(x^4+1)
=1/(x^2+1/x^2)-1/(x^4+1)
=(x^2+1/x^2)的-1次方-(x^4+1)的-1次方
现在减号两边积分,你看行不行。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询