不定积分∫(x^2-1)/(x^4+1)dx计算具体过程

哆嗒数学网
2010-12-23 · 教育领域创作者
个人认证用户
哆嗒数学网
采纳数:2537 获赞数:18812

向TA提问 私信TA
展开全部
分子分母除于x²,然后注意到分子变为 1-1/x²=(x+1/x)'
然后令u=x+1/x,可以得到答案
参考资料中有详细过程

参考资料: http://www.duodaa.com/view.aspx?id=190

fin3574
高粉答主

推荐于2018-04-07 · 你好啊,我是fin3574,請多多指教
fin3574
采纳数:21378 获赞数:134596

向TA提问 私信TA
展开全部

如图所示:

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
吧贴诳猪骑
2010-12-23 · TA获得超过1307个赞
知道小有建树答主
回答量:366
采纳率:100%
帮助的人:169万
展开全部
对被积函数分子分母同时除以x^2,得
原式=∫[1-(1/x^2)]/[x^2+(1/x^2)]dx
=∫1/{[x+(1/x)]^2-2}d[x+(1/x)]
【凑微分法】
=[(√2)/4]ln|[x+(1/x)-√2]/[x-(1/x)+√2]|+C
【常用公式】
=[(√2)/4]ln|[x^2-√2x+1]/[x^2+√2x+1]|+C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
午夜神父
2010-12-23
知道答主
回答量:25
采纳率:0%
帮助的人:10.8万
展开全部
好多都忘了,应该是(x^2-1)/(x^4+1)
=x^2/(x^4+1)-1/(x^4+1)
=1/(x^2+1/x^2)-1/(x^4+1)
=(x^2+1/x^2)的-1次方-(x^4+1)的-1次方
现在减号两边积分,你看行不行。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式