f(x)=sin^4x+2sinxcosx+cos^4x的最小值

 我来答
舒适还明净的海鸥i
2022-08-28 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:70.5万
展开全部
f(x)=sin^4x+2sinxcosx+cos^4x
=(sin^2x+cos^2x)^2+sin2x-1/2*sin^2(2x)
=1+sin2x-1/2*sin^2(2x)
=3/2-1/2(1-sin2x)^2
-1≤sin2x≤1,当sim2x=-1时
f(x)有最小值-1/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式