设A为正交矩阵,且|A|=-1,证明-1是A的特征值 关于这个问题,能解释清楚一点么?
1个回答
展开全部
A是正交矩阵
那么A*A‘=E
|-E-A|=|E+A|=|A*A'+A*E|=|A*(A'+E)|=|A|*|A'+E|=-|A'+E|
而|E+A|=|E'+A|是很容易证的
所以|E+A|=0 即-1是A的特征值
那么A*A‘=E
|-E-A|=|E+A|=|A*A'+A*E|=|A*(A'+E)|=|A|*|A'+E|=-|A'+E|
而|E+A|=|E'+A|是很容易证的
所以|E+A|=0 即-1是A的特征值
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询