在平面四边形ABCD中,AB=BC=CD=a,∠B=90°,∠C=135°沿对角AC将四边形折成直二面角,

在平面四边形ABCD中,AB=BC=CD=a,∠B=90°,∠C=135°沿对角AC将四边形折成直二面角,(1)求证:AB⊥平面BCD(2)求点C的到平面ABD的距离(用... 在平面四边形ABCD中,AB=BC=CD=a,∠B=90°,∠C=135°沿对角AC将四边形折成直二面角,
(1)求证:AB⊥平面BCD
(2)求点C的到平面ABD的距离(用等积法
展开
guang270
2010-12-24 · 超过19用户采纳过TA的回答
知道答主
回答量:30
采纳率:0%
帮助的人:0
展开全部
1)。∵∠C=135° ∴∠ACD=90°
又∵沿对角AC将四边形折成直二面角
∴CD⊥面ABC
∴CD⊥AB
又∵∠B=90° 即AB⊥BC
∴AB⊥平面BCD
2).∵∠B=90° ∴AC=√(AB²+BC²)=√2 a
由1)知CD⊥面ABC, ∴∠BCD=∠ACD=90°
∴BD=√(BC²+CD²)=√2 a AD=√(AC²+CD²)=√3 a
∵AB²+BD²=a²+(√2 a )²=(√3 a )²=AD²
∴BD⊥AB
设点C的到平面ABD的距离为h
∴面积△ABD*h=面积BCD*AB
即1/2AB*BD*h=1/2BC*CD*AB
解得h=(√2 /2)a
hbc3193034
2010-12-24 · TA获得超过10.5万个赞
知道大有可为答主
回答量:10.5万
采纳率:76%
帮助的人:1.4亿
展开全部
(1)AB=BC=a,∠B=90°,
∴∠ACB=45°,
又∠BCD=135°,
∴∠ACD=90°。
∵二面角B-AC-D是直二面角,
∴DC⊥平面ABC,
∴AB⊥DC,又AB⊥BC,
∴AB⊥平面BCD.
(2)易知AB⊥BD,BD=a√2,
∴S△ABD=AB*BD/2=a^2*(√2)/2,
设点C的到平面ABD的距离为h,则
则V(C-ABD)=V(A-BCD),
∴ha^2*(√2)/6=a^3/6,
∴h=a(√2)/2,为所求。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
qiuyusong
2010-12-24 · TA获得超过1437个赞
知道小有建树答主
回答量:195
采纳率:0%
帮助的人:137万
展开全部
解:1、∵∠B=90°,AB=BC
∴∠BCA=45°
而∠C=135°
∴∠ACD=90°即DC⊥AC
又∵面ACD⊥面ABC
∴DC⊥面ABC
DC⊥AB
而AB⊥BC
∴AB⊥面BCD
2、从C画一直线垂直于面ABD,交于E
∵DC⊥面ABC,AB=BC=CD=a
∴四面体ABCD体积为1/2AB*BC*CD=1/2a3,BD=√2a
∴面ABD面积为√2/2a2
∴CE=√2/2a
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式