二分查找法的判定树有什么特点?能不能用一个公式直接求出树的深度?

 我来答
sgfqat
2010-12-25 · TA获得超过665个赞
知道答主
回答量:350
采纳率:0%
帮助的人:235万
展开全部
算法思想:

将数列按有序化(递增或递减)排列,查找过程中采用跳跃式方式查找,即先以有序数列的中点位置为比较对象,如果要找的元素值小于该中点元素,则将待查序列缩小为左半部分,否则为右半部分。通过一次比较,将查找区间缩小一半。

折半查找是一种高效的查找方法。它可以明显减少比较次数,提高查找效率。但是,折半查找的先决条件是查找表中的数据元素必须有序。

算法步骤描述:

step1 首先确定整个查找区间的中间位置
mid = ( left + right )/ 2

step2 用待查关键字值与中间位置的关键字值进行比较;

若相等,则查找成功

若大于,则在后(右)半个区域继续进行折半查找

若小于,则在前(左)半个区域继续进行折半查找
Step3 对确定的缩小区域再按折半公式,重复上述步骤。最后,得到结果:要么查找成功, 要么查找失败。
折半查找的存储结构采用一维数组存放。

折半查找算法举例

对给定数列(有序),按折半查找算法,查找关键字值为30的数据元素。

折半查找的算法讨论:

优点: ASL≤log2n,即每经过一次比较,查找范围就缩小一半。经log2n 次计较就可以完成查找过程。

缺点:因要求有序,所以要求查找数列必须有序,而对所有数据元素按大小排序是非常费时的操作。另外,顺序存储结构的插入、删除操作不便利。

考虑:能否通过一次比较抛弃更多的部分(即经过一次比较,使查找范围缩得更小),以达到提高效率的目的。……?

可以考虑把两种方法(顺序查找和折半查找)结合起来,即取顺序查找简单和折半查找高效之所长,来达到提高效率的目的?实际上这就是分块查找的算法思想。

例如:[问题分析] 由于数据按升序排列,故用折半查找最快捷.
program binsearch;
const max=10;
var num:array[1..max] of integer;
i,n:integer;
procedure search(x,a,b:integer);
var mid:integer;
begin
if a=b then
if x=num[a] then writeln('Found:',a) else writeln('Number not found')
else begin
mid:=(a+b) div 2;
if x>num[mid] then search(x,mid,b);
if x<num[mid] then search(x,a,mid);
if x=num[mid] then writeln('Found:',mid);
end;
end;
begin
write('Please input 10 numbers in order:');
for i:=1 to max do read(num);
write('Please input the number to search:');
readln(n);
search(n,1,max);
end.

Java风格的代码举例:
//使用折半法进行查找
int getIndex(int[] nList, int nCount, int nCode) {
int nIndex = -1;
int jMin = 0;
int jMax = nCount - 1;
int jCur = (jMin+jMax)/2;
do
{
if(nList[jCur] > nCode) {
jMax--;
} else if(nList[jCur] < nCode) {
jMin++;
} else if(nList[jCur] == nCode) {
nIndex = jCur;
break;
}
jCur = (jMin + jMax)/2;
} while(jMin < jMax);

return nIndex;
}

二分查找的性能说明

虽然二分查找的效率高,但是要将表按关键字排序。而排序本身是一种很费时的运算。既使采用高效率的排序方法也要花费 O(n lg n) 的时间。
二分查找只适用顺序存储结构。为保持表的有序性,在顺序结构里插入和删除都必须移动大量的结点。因此,二分查找特别适用于那种一经建立就很少改动、而又经常需要查找的线性表。
对那些查找少而又经常需要改动的线性表,可采用链表作存储结构,进行顺序查找。链表上无法实现二分查找

二分查找的C#实现代码:
using System;
using System.Collections.Generic;
using System.Text;
namespace BinschDemo
{
public class BinschDemo
{
public static int Binsch(int[] a, int key)
{
int low = 1;
int high = a.Length;
while (low <= high)
{
int mid = (low + high) / 2;
if (key == a[mid])
{
return mid; //返回找到的索引值
}
else
{
if (key < a[mid])
high = mid - 1;
else
low = mid + 1;
}
}
return -1; //查找失败
}
static void Main(string[] args)
{
Console.WriteLine("请输入10个递增数字: ");
int[] list = new int[10];
for (int i = 0; i < 10; i++)
{
Console.Write("数字 : ", i);
list = Convert.ToInt32(Console.ReadLine());
}
Console.Write("请输入一个你要查找的数字:");
int find = Convert.ToInt32(Console.ReadLine());
int result = Binsch(list, find);
Console.WriteLine(result);
}
}
}

分块查找又索引查找,它主要用于“分块有序”表的查找。所谓“分块有序”是指将线性表L(一维数组)分成m个子表(要求每个子表的长度相等),且第i+1个子表中的每一个项目均大于第i个子表中的所有项目。“分块有序”表应该包括线性表L本身和分块的索引表A。因此,分块查找的关键在于建立索引表A。
(1)建立索引表A(二维数组)
索引表包括两部分:关键字项(子表中的最大值)和指针项(子表的第一项在线性表L中位置)
索引表按关键字有序的。
例如:线性表L(有序)为:1 2 3 4 5 6 7 8 9 10 11 12
分成m=3个子表:
索引表A:二维数组:第一列为每个子表的最大值 ,第二列为每个子表的起始地址
即: 4 0
8 4
12 8
(2)利用索引表A,确定待查项X所在的子表(块)。
(3)在所确定的子表中可以用“折半查找”法搜索待查项X;若找到则输出X;否则输出未找到信息。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式