高中数学题 圆锥曲线 求解!
椭圆C:X²/4+y²/3=1,对于直线y=4x+m,C上有不同的两点关于它对称,求m的取值范围。...
椭圆C:X²/4+y²/3=1,对于直线y=4x+m,C上有不同的两点关于它对称,求m的取值范围。
展开
展开全部
设A(x1,y1)B(x2,y2),带入3X^2+4y^2=12然后相减
有3(x1+x2)+4(y1+y2)*k'=0 k'=-1/4 设中点P(x0,y0)6x0-2y0=0 y0=3x0
又中点在直线y=4x+m上 y0=4x0+m x0=。。。y0=...(用m表示)
然后用P(x0,y0)求出直线AB用m表示 联立椭圆方程
要求判别式>0就可以求出m值范围,如果m值求不出就说明不存在对称
有3(x1+x2)+4(y1+y2)*k'=0 k'=-1/4 设中点P(x0,y0)6x0-2y0=0 y0=3x0
又中点在直线y=4x+m上 y0=4x0+m x0=。。。y0=...(用m表示)
然后用P(x0,y0)求出直线AB用m表示 联立椭圆方程
要求判别式>0就可以求出m值范围,如果m值求不出就说明不存在对称
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不妨设交点是A(x1,y1)B(x2,y2)中点坐标是(x0,y0)则AB直线方程设可设为y=-1/4x+b
x1^2/4+y1^2/3=1①
x2^2/4+y2^2/3=1②
y1=-1/4x1+b③
y2=-1/4x2+b④
①-②,得
(x1-x2)(x1+x2)/4+(y1-y2)(y1+y2)/3=0
③-④,得
y1-y2=-1/4(x1-x2)把y1-y2整体代入上式,提取公因式(x1-x2)得
(x1-x2)(2x0/4+-1/4*2y0/3)=0
由于x1不等于x2,所以,
1/2 x0-1/6y0=0
又 y0=4x0+m
解得 x0=-m y0=-3m
x0^2/4 +y0^2/3<1
m^2<4/13
所以, -2√13/13<m<2√13/13
x1^2/4+y1^2/3=1①
x2^2/4+y2^2/3=1②
y1=-1/4x1+b③
y2=-1/4x2+b④
①-②,得
(x1-x2)(x1+x2)/4+(y1-y2)(y1+y2)/3=0
③-④,得
y1-y2=-1/4(x1-x2)把y1-y2整体代入上式,提取公因式(x1-x2)得
(x1-x2)(2x0/4+-1/4*2y0/3)=0
由于x1不等于x2,所以,
1/2 x0-1/6y0=0
又 y0=4x0+m
解得 x0=-m y0=-3m
x0^2/4 +y0^2/3<1
m^2<4/13
所以, -2√13/13<m<2√13/13
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询