设函数F(X)=ax^3+bx+c(a不等于0),为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导数f

设函数F(X)=ax^3+bx+c(a不等于0),为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导数f'(x)的最小值为-12求:1)a与b的值... 设函数F(X)=ax^3+bx+c(a不等于0),为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导数f'(x)的最小值为-12
求:
1)a与b的值
我想问下切线与直线x-6y-7=0垂直说明什么?x-6y-7=0的斜率怎么算出是1/6?F'(1)=3a+b=-6又是怎么弄出的?就这几个问题不太懂,高手出来指点下吧~
展开
百度网友fac6652
2010-12-25 · TA获得超过283个赞
知道小有建树答主
回答量:88
采纳率:0%
帮助的人:105万
展开全部
把x-6y-7=0改写成y=1/6x-7/6(形如y=kx+b),斜率自然就是1/6l了。
其次,两条直线相互垂直,如果直线斜率存在则二者斜率之积为-1,所以F'(1)=3a+b=-6
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式