设函数f(x)=ax^3+bx+c(a不等于0)为奇函数,其图像在点(1,f(1))处的切线与直线x-6y-7=0垂直,
展开全部
f(x)=ax^3+bx+c is odd function
f(x) =-f(-x)
=> c=0
slope of line : x-6y-7=0 = 1/6
f(x)=ax^3+bx
f'(x) =3ax^2+b
f'(1)= 3a+b = -6 (1)
f''(x) =6ax =0
x=0
f''(0)= b=-12 (2)
from (1) (2)
a=2
f(x)=2x^3-12
f(x) =-f(-x)
=> c=0
slope of line : x-6y-7=0 = 1/6
f(x)=ax^3+bx
f'(x) =3ax^2+b
f'(1)= 3a+b = -6 (1)
f''(x) =6ax =0
x=0
f''(0)= b=-12 (2)
from (1) (2)
a=2
f(x)=2x^3-12
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由于函数为奇函数,则:C=0
f(x)在(1,f(1))的切线与直线垂直,则此时切线的斜率为:k=-6
又:f'(x)=3ax^2+b
则:3a+b=-6
导函数在x=0时能取到最小值,则:b=-12
所以:a=2
所以:函数的表达式为:f(x)=2x^3-12x
f(x)在(1,f(1))的切线与直线垂直,则此时切线的斜率为:k=-6
又:f'(x)=3ax^2+b
则:3a+b=-6
导函数在x=0时能取到最小值,则:b=-12
所以:a=2
所以:函数的表达式为:f(x)=2x^3-12x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询