设函数F(X)=ax^3+bx+c(a不等于0),为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导数f
设函数F(X)=ax^3+bx+c(a不等于0),为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导数f'(x)的最小值为-12求:1)a与b的值...
设函数F(X)=ax^3+bx+c(a不等于0),为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导数f'(x)的最小值为-12
求:
1)a与b的值
我想问下切线与直线x-6y-7=0垂直说明什么?x-6y-7=0的斜率怎么算出是1/6?F'(1)=3a+b=-6又是怎么弄出的?就这几个问题不太懂,高手出来指点下吧~ 展开
求:
1)a与b的值
我想问下切线与直线x-6y-7=0垂直说明什么?x-6y-7=0的斜率怎么算出是1/6?F'(1)=3a+b=-6又是怎么弄出的?就这几个问题不太懂,高手出来指点下吧~ 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询