已知,三角形ABC中AB=AC=10cmBC=8cm,点D是AB的中点
已知在三角形ABC中,AB=AC=10CM,BC=8CM,点D为AB的中点,点P在线段BC上以3CM/S的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动。1...
已知在三角形ABC中,AB=AC=10CM,BC=8CM,点D为AB的中点,点P在线段BC上以3CM/S的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动。
1.如果点Q的运动速度与点P的运动速度相等,则1秒后,三角形BPO与三角形CQP是否全等?证明。
2.如果点Q的运动速度与点P的运动速度不相等,则当点Q运动速度为多少时,可以让三角形BPO与三角形CQP
3.若点Q以2中的速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三角形ABC三边运动,求经过多长时间点P与点C第一次在三角形ABC的哪条边上相遇 展开
1.如果点Q的运动速度与点P的运动速度相等,则1秒后,三角形BPO与三角形CQP是否全等?证明。
2.如果点Q的运动速度与点P的运动速度不相等,则当点Q运动速度为多少时,可以让三角形BPO与三角形CQP
3.若点Q以2中的速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三角形ABC三边运动,求经过多长时间点P与点C第一次在三角形ABC的哪条边上相遇 展开
2个回答
展开全部
(一.)
由于Vp≠VQ,所以CQ≠BP。因为△≌必须满足三边分别对应历纯祥相等故假设;
1.CQ=BD=5,(1)若PC=PB=4 ,PQ=PD,此时显然裤信满足SSS定理△≌,
(2)若PC=PD, PQ=PB,此时有∠CPQ对应∠BPD相等,
又有∠PQD=∠CPQ
∠QDP=∠BPD
所以∠PQD=∠QDP
所以 PD=PQ
所以PC=PB=4
2. CQ=PD (1)若PC=PB=4,PQ==BD=5有AP⊥BC,PD=CQ=1/2AB=5
所以此种情况与1一致
(2)若PC=BD=5,有PB=8-5=3=PQ,此时有∠CPQ与∠B对应相等
因为∠B=∠C
所以∠CPQ=∠C
所以PQ=CQ=BP=3
此与CQ≠BP矛盾
总之,P点在B→C以及Q点由C→A过程中会出现两次△≌,
其边长为3,3,5 和5,5,4。鉴于P,Q点速度不等,只能取5,5,4(即P,Q均处于中点位置时)。运动时间为4/3S。VQ=15/4
(二.)
P,Q第一次相遇即两者经过的距离相等。Vp=3;VQ=15/4,开始运动时两者相距8CM,所以有VQ*t=8+Vp*t.
求得t=32/3,
此时点Q运动的距离(距C的距离)为(32/3)*(15/4)=40CM,
所以相遇点应该在AB上(距A点2CM处,此时点Q已肢搏经绕△ABC转过了一周)
由于Vp≠VQ,所以CQ≠BP。因为△≌必须满足三边分别对应历纯祥相等故假设;
1.CQ=BD=5,(1)若PC=PB=4 ,PQ=PD,此时显然裤信满足SSS定理△≌,
(2)若PC=PD, PQ=PB,此时有∠CPQ对应∠BPD相等,
又有∠PQD=∠CPQ
∠QDP=∠BPD
所以∠PQD=∠QDP
所以 PD=PQ
所以PC=PB=4
2. CQ=PD (1)若PC=PB=4,PQ==BD=5有AP⊥BC,PD=CQ=1/2AB=5
所以此种情况与1一致
(2)若PC=BD=5,有PB=8-5=3=PQ,此时有∠CPQ与∠B对应相等
因为∠B=∠C
所以∠CPQ=∠C
所以PQ=CQ=BP=3
此与CQ≠BP矛盾
总之,P点在B→C以及Q点由C→A过程中会出现两次△≌,
其边长为3,3,5 和5,5,4。鉴于P,Q点速度不等,只能取5,5,4(即P,Q均处于中点位置时)。运动时间为4/3S。VQ=15/4
(二.)
P,Q第一次相遇即两者经过的距离相等。Vp=3;VQ=15/4,开始运动时两者相距8CM,所以有VQ*t=8+Vp*t.
求得t=32/3,
此时点Q运动的距离(距C的距离)为(32/3)*(15/4)=40CM,
所以相遇点应该在AB上(距A点2CM处,此时点Q已肢搏经绕△ABC转过了一周)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询