已知正实数xi:x1*x2*x3*x4*...*xn=1.求证:[1/(n-1+x1)]+[1/(n-1+x2)]+...+[1/(n-1+xn)]=<1.
1个回答
展开全部
∵1/(n-1+xi)-1/n=(1-xi)/[n(n-1+xi)]
∴[1/(n-1+x1)]-1/n+[1/(n-1+x2)]-1/n+...+[1/(n-1+xn)-1/n]
=(1-x1)/[n(n-1+x1)]+(1-x2)/[n(n-1+x2)]+…+(1-xn)/[n(n-1+xn)]
注意到xi越大,1-xi越小,n(n-1+xi)越大
即(1-x1)/[n(n-1+x1)]+(1-x2)/[n(n-1+x2)]+…+(1-xn)/[n(n-1+xn)]
是反序和,由切比雪夫不等式,有:
(1-x1)/[n(n-1+x1)]+(1-x2)/[n(n-1+x2)]+…+(1-xn)/[n(n-1+xn)]
≤(n-x1-x2-…-xn){1/[n(n-1+x1)]+1/[n(n-1+x2)]+...+1/[n(n-1+xn)]}/n
由x1x2…xn=1知,x1+x2+…+xn≥n
而{1/[n(n-1+x1)]+1/[n(n-1+x2)]+...+1/[n(n-1+xn)]}/n>0
故[1/(n-1+x1)]-1/n+[1/(n-1+x2)]-1/n+...+[1/(n-1+xn)-1/n]≤0,移项得:
[1/(n-1+x1)]+[1/(n-1+x2)]+...+[1/(n-1+xn)]≤1
∴[1/(n-1+x1)]-1/n+[1/(n-1+x2)]-1/n+...+[1/(n-1+xn)-1/n]
=(1-x1)/[n(n-1+x1)]+(1-x2)/[n(n-1+x2)]+…+(1-xn)/[n(n-1+xn)]
注意到xi越大,1-xi越小,n(n-1+xi)越大
即(1-x1)/[n(n-1+x1)]+(1-x2)/[n(n-1+x2)]+…+(1-xn)/[n(n-1+xn)]
是反序和,由切比雪夫不等式,有:
(1-x1)/[n(n-1+x1)]+(1-x2)/[n(n-1+x2)]+…+(1-xn)/[n(n-1+xn)]
≤(n-x1-x2-…-xn){1/[n(n-1+x1)]+1/[n(n-1+x2)]+...+1/[n(n-1+xn)]}/n
由x1x2…xn=1知,x1+x2+…+xn≥n
而{1/[n(n-1+x1)]+1/[n(n-1+x2)]+...+1/[n(n-1+xn)]}/n>0
故[1/(n-1+x1)]-1/n+[1/(n-1+x2)]-1/n+...+[1/(n-1+xn)-1/n]≤0,移项得:
[1/(n-1+x1)]+[1/(n-1+x2)]+...+[1/(n-1+xn)]≤1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询