已知COS(A+B)=12/13,COS(2A+B)=3/5,若A∈(0,π/2),求COSA的值
2个回答
展开全部
cos(A+B)=12/13
sin(A+B)=5/13
tan(A+B)=5/12
cos(2A+B)=3/5
sin(2A+B)=4/5
tan(2A+B)=4/3
[tanA+tan(A+B)]/[1-tanAtan(A+B)]=4/3
令tanA=a
(a+5/12)/(1-5/12a)=4/3
3a+5/4=4-5/3a
36a+15=48-20a
56a=33
a=33/56
tanA=33/56
A∈(0,π/2),
所以cosA=56/65
(利用直角三角形求出)
33,56,65构成直角三角形
需要hi我
sin(A+B)=5/13
tan(A+B)=5/12
cos(2A+B)=3/5
sin(2A+B)=4/5
tan(2A+B)=4/3
[tanA+tan(A+B)]/[1-tanAtan(A+B)]=4/3
令tanA=a
(a+5/12)/(1-5/12a)=4/3
3a+5/4=4-5/3a
36a+15=48-20a
56a=33
a=33/56
tanA=33/56
A∈(0,π/2),
所以cosA=56/65
(利用直角三角形求出)
33,56,65构成直角三角形
需要hi我
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询