在平面直角坐标系中,抛物线y=ax2+bx+c,的对称轴为x=2,且经过点B(0,4),C(5,9),直线BC与x轴交于

在平面直角坐标系中,抛物线y=ax2+bx+c,的对称轴为x=2,且经过点B(0,4),C(5,9),直线BC与x轴交于点A。(1)求出直线BC及抛物线解析式。(2)D(... 在平面直角坐标系中,抛物线y=ax2+bx+c,的对称轴为x=2,且经过点B(0,4),C(5,9),直线BC与x轴交于点A 。

(1)求出直线BC及抛物线解析式。
(2)D(1,y)再抛物线上,在抛物线的对称轴上是否存在两点M,N,且MN=2,点M再点N的上方,使得四边形BDNM的周长最小,若存在,求出M,N两点的坐标,若不存在,请说明理由
(3)现将直线BC绕B点旋转与抛物线相较于另一点P,请找出抛物线上所有满足到直线BC距离为2倍根号3的点P
展开
c373762978
2010-12-29 · TA获得超过2317个赞
知道小有建树答主
回答量:315
采纳率:0%
帮助的人:324万
展开全部
设直线方程为y=kx+b
过点BC
则有方程
4=b
9=5k+b
k=1
b=4
方程为y=x+4
抛物线y=ax2+bx+c,的对称轴为x=2,且经过点B(0,4),C(5,9)
所以有方程
-b/2a=2
4=c
9=25a+5b+c
解得
a=1
b=-4
c=4
方程为y=x^2-4x+5
(2)D (1,y)在抛物线上
y=1-4+5=2
D(1,2)
BD=√[1+(2-4)^2]=√5
MN=2,且MN在对称轴上,点M在N上
设N点的坐标为(2,a)M为(2,2+a)
MB=√[4+(2+a-4)^2]=√[4+(a-2)^2]
ND=√[(1-2)^2+(2-a)^2]=√[1+(2-a)^2]
周长为 √5+2+√[4+(a-2)^2]+]+√[1+(2-a)^2
要想使得周长最小,求取a的值使得√[4+(a-2)^2]+]+√[1+(2-a)^2最小
a=2
周长为√5+2+1+2=5+√5
(3)设点p(m,n)
BP的方程为y=(n-4)/m*x+4
P到BC的距离为2√3,过点p与BC垂直直线的斜率为-1,点p到BC的距离可求为√{[n-(m+n+4)/2]^2+[m-(m+n-4)/2]^2}=√[(1/4)*2(n-m-4)^2]=2√3
有方程
n=m^2-4m+5
√[(1/4)*2(n-m-4)^2]=2√3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式