定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增,设a=f(3),b=f(根号2),c=f(2),则a,b,

 我来答
初未苹2044
2010-12-30 · 超过28用户采纳过TA的回答
知道答主
回答量:89
采纳率:0%
帮助的人:70.8万
展开全部
题目不完整啊?
由条件f(x+1)=-f(x),可以得:
f(x+2)=f((x+1)+1)=-f(x+1)=f(x),所以f(x)是个周期函数.周期为2.
又因为f(x)是偶函数,所以图象在[0,1]上是减函数.
a=f(3)=f(1+2)=f(1),
b=f(根号2)=f(根号2-2)=f(2-根号2)
c=f(2)=f(0)
0<2-根号2<1
所以a<b<c
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式