数学题已知f(x)=sin2x(sinx-cosx)/cosx 1.求函数f(x)的定义域和最大值 2.求使f(x)≥0成立的x... 20
数学题已知f(x)=sin2x(sinx-cosx)/cosx1.求函数f(x)的定义域和最大值2.求使f(x)≥0成立的x的取值集合...
数学题已知f(x)=sin2x(sinx-cosx)/cosx 1.求函数f(x)的定义域和最大值 2.求使f(x)≥0成立的x的取值集合
展开
展开全部
解:(1)由f(x)=sin2x(sinx-cosx)/cosx可知:cosx≠0,解得:x≠kπ+π/2,k∈Z
所以:f(x)=sin2x(sinx-cosx)/cosx的定义域是{x|x≠kπ+π/2,k∈Z};
因为:f(x)=sin2x(sinx-cosx)/cosx=2sinx(sinx-cosx)=2(sinx)²-2sinxcosx=1-cos2x-sin2x,
即:f(x)=1-sin2x-cos2x=1-√2sin(2x+π/4),
当sin(2x+π/4)=-1,即x=kπ+5π/8,k∈Z时,函数f(x)有最大值1+√2;
(2)因为f(x)≥0,f(x)=1-√2sin(2x+π/4),所以:1-√2sin(2x+π/4)≥0,
即:sin(2x+π/4) ≤√2/2,所以:2kπ+π/4≤2x+π/4≤2kπ+3π/4,k∈Z
解得:kπ≤x≤2kπ+π/4,k∈Z,
故:使f(x)≥0成立的x的取值集合为:{x|kπ≤x≤2kπ+π/4,k∈Z}
所以:f(x)=sin2x(sinx-cosx)/cosx的定义域是{x|x≠kπ+π/2,k∈Z};
因为:f(x)=sin2x(sinx-cosx)/cosx=2sinx(sinx-cosx)=2(sinx)²-2sinxcosx=1-cos2x-sin2x,
即:f(x)=1-sin2x-cos2x=1-√2sin(2x+π/4),
当sin(2x+π/4)=-1,即x=kπ+5π/8,k∈Z时,函数f(x)有最大值1+√2;
(2)因为f(x)≥0,f(x)=1-√2sin(2x+π/4),所以:1-√2sin(2x+π/4)≥0,
即:sin(2x+π/4) ≤√2/2,所以:2kπ+π/4≤2x+π/4≤2kπ+3π/4,k∈Z
解得:kπ≤x≤2kπ+π/4,k∈Z,
故:使f(x)≥0成立的x的取值集合为:{x|kπ≤x≤2kπ+π/4,k∈Z}
展开全部
1.分母不能为0,所以cosx≠0,即x≠kπ+π/2
f(x)=2sinxcosx(sinx-cosx)/cosx=2sin²x-2sinxcosx
=1-sin2x-(1-2sin²x)
=1-sin2x-cos2x
=1-√2(√2/2 sin2x+√2/2 cos2x)
=1-√2sin(2x+π/4)
所以最大值为1+√2
2.f(x) =1-√2sin(2x+π/4)≥0
即sin(2x+π/4)≤√2/2
所以 ﹣5π/4+2kπ≤2x+π/4≤π/4+2kπ
所以 ﹣3π/4+kπ ≤ x ≤ kπ
f(x)=2sinxcosx(sinx-cosx)/cosx=2sin²x-2sinxcosx
=1-sin2x-(1-2sin²x)
=1-sin2x-cos2x
=1-√2(√2/2 sin2x+√2/2 cos2x)
=1-√2sin(2x+π/4)
所以最大值为1+√2
2.f(x) =1-√2sin(2x+π/4)≥0
即sin(2x+π/4)≤√2/2
所以 ﹣5π/4+2kπ≤2x+π/4≤π/4+2kπ
所以 ﹣3π/4+kπ ≤ x ≤ kπ
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-11-01
展开全部
解
f(x)=2sinxcosx(sinx-cosx)/cosx=2sin²x-2sinxcosx
=-sin2x-(1-2sin²x)+1
=-sin2x-cos2x+1
=-√2sin(2x-π/4)+1
定义域为
cosx≠0
∴x≠π/2+kπ
最大值是f(x)max=根号2+1
(2)f(x)=-根号2sin(2x-Pai/4)+1>=0
即有sin(2x-Pai/4)<=根号2/2
2kPai<=2x-Pai/4<=2kPai+Pai/4或2kPai+3Pai/4<=2x-Pai/4<=2kPai+2Pai
即有kPai+Pai/8<=x<=kPai+Pai/4或kPai+Pai/2<=x<=kPai+9Pai/8
f(x)=2sinxcosx(sinx-cosx)/cosx=2sin²x-2sinxcosx
=-sin2x-(1-2sin²x)+1
=-sin2x-cos2x+1
=-√2sin(2x-π/4)+1
定义域为
cosx≠0
∴x≠π/2+kπ
最大值是f(x)max=根号2+1
(2)f(x)=-根号2sin(2x-Pai/4)+1>=0
即有sin(2x-Pai/4)<=根号2/2
2kPai<=2x-Pai/4<=2kPai+Pai/4或2kPai+3Pai/4<=2x-Pai/4<=2kPai+2Pai
即有kPai+Pai/8<=x<=kPai+Pai/4或kPai+Pai/2<=x<=kPai+9Pai/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询