2个回答
展开全部
若实数x,y满足x²+2√3x+√(x+y+1)+3=0,求代数式[1/(x-y)+1/(x+y)]÷y/(x²+y²)的值
解:x²+2√3x+√(x+y+1)+3=(x+√3)²+√(x+y+1)=0
故x=-√3,y=-x-1=√3-1;于是:
x²+y²=3+(√3-1)²=3+(3-2√3+1)=7-2√3;
x²-y²=3-(√3-1)²=3-(3-2√3+1)=2√3-1
[1/(x-y)+1/(x+y)]÷y/(x²+y²)=[2x/(x²-y²)]×[(x²+y²)/y]=[2x(x²+y²)]/[y(x²-y²)]
=[-2(√3)(7-2√3)]/[(√3-1)(2√3-1)]=(-14√3+12)/(6-2√3-√3+1)=(-14√3+12)/(7-3√3)
=(-14√3+12)(7+3√3)/22=(-7√3+6)(7+3√3)/11=(-49√3+42-63+18√3)/11=-(21+31√3)/11
解:x²+2√3x+√(x+y+1)+3=(x+√3)²+√(x+y+1)=0
故x=-√3,y=-x-1=√3-1;于是:
x²+y²=3+(√3-1)²=3+(3-2√3+1)=7-2√3;
x²-y²=3-(√3-1)²=3-(3-2√3+1)=2√3-1
[1/(x-y)+1/(x+y)]÷y/(x²+y²)=[2x/(x²-y²)]×[(x²+y²)/y]=[2x(x²+y²)]/[y(x²-y²)]
=[-2(√3)(7-2√3)]/[(√3-1)(2√3-1)]=(-14√3+12)/(6-2√3-√3+1)=(-14√3+12)/(7-3√3)
=(-14√3+12)(7+3√3)/22=(-7√3+6)(7+3√3)/11=(-49√3+42-63+18√3)/11=-(21+31√3)/11
追问
不是应该把代数式化简吗
追答
已经化简到不能再化的程度了。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询