一道高中数学几何证明题题

正四棱锥P-ABCD底面的四个顶点A,B,C,D,在球O的同一个大圆上,点P在球面上,且已知正四棱锥的体积为三分之十六,求球O的表面积与体积?求比较全的过程谢谢。... 正四棱锥P-ABCD底面的四个顶点A,B,C,D,在球O的同一个大圆上,点P在球面上,且已知正四棱锥的体积为三分之十六,求球O的表面积与体积?
求比较全的过程 谢谢 。
展开
百度网友b56aa35
2011-01-01 · 超过13用户采纳过TA的回答
知道答主
回答量:36
采纳率:0%
帮助的人:0
展开全部
设正四棱锥的边长为a,由已知条件可知,球心O为底面正方形的中心,取AB边的中点为M,连接PO、OM、MP,易知,三角形OPM为直角三角形,因为三角形PAB为等边三角形,边长为a,所以PM=(根号3)a/2,(/为除号,*为乘号),又易知OM=a/2,所以OP=(根号2)a/2,正四棱锥的体积=(1/3)*正方形ABCD的面积*OP的长度=(1/3)*a的平方*(根号2)a/2,由已知条件,体积为三分之十六,可以解得a=2*根号2,所以OP=(根号2)a/2=2,即球的半径为2,剩下的相信你会做了,呵呵!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式