18题1问,跪求
展开全部
解:(1)已知函数f(x)=ax3+bx(x∈R),∴f′(x)=3ax2+b
又函数f(x)图象在点x=3处的切线与直线24x-y+1=0平行,
且函数f(x)在x=1处取得极值,∴f′(3)=27a+b=24,
且f′(1)=3a+b=0,解得a=1,b=-3
∴f(x)=x3-3x
令f′(x)=3x2-3≤0得:-1≤x≤1,所以函数的单调递减区间为[-1,1]
(2)当a=1时,f(x)=x3+bx(x∈R),又函数f(x)在[-1,1]上是减函数
∴f′(x)=3x2+b≤0在[-1,1]上恒成立
即b≤-3x2在[-1,1]上恒成立∴b≤-3
当b=-3时,f′(x)不恒为0,∴b≤-3
又函数f(x)图象在点x=3处的切线与直线24x-y+1=0平行,
且函数f(x)在x=1处取得极值,∴f′(3)=27a+b=24,
且f′(1)=3a+b=0,解得a=1,b=-3
∴f(x)=x3-3x
令f′(x)=3x2-3≤0得:-1≤x≤1,所以函数的单调递减区间为[-1,1]
(2)当a=1时,f(x)=x3+bx(x∈R),又函数f(x)在[-1,1]上是减函数
∴f′(x)=3x2+b≤0在[-1,1]上恒成立
即b≤-3x2在[-1,1]上恒成立∴b≤-3
当b=-3时,f′(x)不恒为0,∴b≤-3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询