已知函数f(x)和g(x)的定义域均为R,f(x)是偶函数,g(x)是奇函数,且g(x)的图象过点(-1,3),
已知函数f(x)和g(x)的定义域均为R,f(x)是偶函数,g(x)是奇函数,且g(x)的图象过点(-1,3),g(x)=f(x-1),则f(2012)+g(2013)=...
已知函数f(x)和g(x)的定义域均为R,f(x)是偶函数,g(x)是奇函数,且g(x)的图象过点(-1,3),g(x)=f(x-1),则f(2012)+g(2013)=______.
展开
1个回答
展开全部
∵g(x)=f(x-1),g(x)是奇函数,
∴g(-x)=-g(x),
即f(-x-1)=-f(x-1),
又f(x)是偶函数,
∴f(-x-1)=-f(x-1)=f(x+1),
即f(x+2)=-f(x),
∴f(x+4)=f(x),即函数f(x)的周期性为4,
∴f(2012)=f(0),
∵g(x)=f(x-1),
∴g(2013)=f(2013-1)=f(2012)=f(0),
∴f(2012)+g(2013)=2f(0),
∵g(x)的图象过点(-1,3),得g(-1)=3,
又g(-1)=-g(1)=3,
∴g(1)=-3,
又g(1)=f(0),
∴f(0)=g(1)=-3,
∴f(2012)+g(2013)=2f(0)=-6.
故答案为:-6.
∴g(-x)=-g(x),
即f(-x-1)=-f(x-1),
又f(x)是偶函数,
∴f(-x-1)=-f(x-1)=f(x+1),
即f(x+2)=-f(x),
∴f(x+4)=f(x),即函数f(x)的周期性为4,
∴f(2012)=f(0),
∵g(x)=f(x-1),
∴g(2013)=f(2013-1)=f(2012)=f(0),
∴f(2012)+g(2013)=2f(0),
∵g(x)的图象过点(-1,3),得g(-1)=3,
又g(-1)=-g(1)=3,
∴g(1)=-3,
又g(1)=f(0),
∴f(0)=g(1)=-3,
∴f(2012)+g(2013)=2f(0)=-6.
故答案为:-6.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询