已知数列{a n }的前n项和为S n ,且S n =2a n +n-4(n∈N * )(1)求证:数列{a n -1}为等比数列,并求
已知数列{an}的前n项和为Sn,且Sn=2an+n-4(n∈N*)(1)求证:数列{an-1}为等比数列,并求数列{an}的通项公式;(2)设cn=anlog2(an-...
已知数列{a n }的前n项和为S n ,且S n =2a n +n-4(n∈N * )(1)求证:数列{a n -1}为等比数列,并求数列{a n }的通项公式;(2)设c n =a n log 2 (a n -1),求数列{c n }的前n项和为T n .
展开
展开全部
(1)∵S n =2a n +n-4,∴S n-1 =2a n-1 +(n-1)-4 ∴a n =2a n -2a n-1 +1,从而a n =2a n-1 -1即a n -1=2(a n-1 -1) ∴数列{a n -1}为等比数列 又a 1 =S 1 =2a 1 -3,故a 1 =3 因此 a n -1=( a 1 -1)× 2 n-1 = 2 n ∴ a n = 2 n +1 (2)由(1)可得 C n =( 2 n +1)n=n? 2 n +n 记 A n =1×2+2× 2 2 +3× 2 3 +…+n? 2 n ∴ 2 A n =1× 2 2 +2× 2 3 +…+(n-1)? 2 n +n? 2 n+1 两式相减可得: - A n =2+ 2 2 + 2 3 +…+ 2 n -n? 2 n+1 =
∴ A n =(n-1)? 2 n+1 +2 ∴ T n =(n-1)? 2 n+1 +2+
|
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询