已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10.(Ⅰ)求数列{an}
已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10.(Ⅰ)求数列{an}与{bn}的通项公式;(Ⅱ)求Tn...
已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10.(Ⅰ)求数列{an}与{bn}的通项公式;(Ⅱ)求Tn=a1b1+a2b2+…+anbn,n∈N+的值.
展开
1个回答
展开全部
(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q,由a1=b1=2,得a4=2+3d,b4=2q3,S4=8+6d,由条件得方程组
?
,
故an=3n?1,bn=2n(n∈N*).
(Ⅱ)Tn=2×2+5×22+8×23+…+(3n?1)×2n①,
2Tn=2×22+5×23+8×24+…+(3n?1)×2n+1②,
①-②得 ?Tn=2×2+3×22+3×23+…+3×2n?(3n?1)×2n+1,
∴Tn=5?5×2n+3n×2n+1.
|
|
故an=3n?1,bn=2n(n∈N*).
(Ⅱ)Tn=2×2+5×22+8×23+…+(3n?1)×2n①,
2Tn=2×22+5×23+8×24+…+(3n?1)×2n+1②,
①-②得 ?Tn=2×2+3×22+3×23+…+3×2n?(3n?1)×2n+1,
∴Tn=5?5×2n+3n×2n+1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询