如图,在菱形ABCD中,∠B=60°,点E、F分别在AB、AD上,且BE=AF,试判断△CEF的形状,并说明理由

如图,在菱形ABCD中,∠B=60°,点E、F分别在AB、AD上,且BE=AF,试判断△CEF的形状,并说明理由.... 如图,在菱形ABCD中,∠B=60°,点E、F分别在AB、AD上,且BE=AF,试判断△CEF的形状,并说明理由. 展开
 我来答
阿瑟00A01
2014-09-13 · TA获得超过237个赞
知道答主
回答量:198
采纳率:0%
帮助的人:63.9万
展开全部
解:连接AC,
∵在菱形ABCD中,∠B=60°,
∴AC=AB=BC=CD=AD,
∵BE=AF,
∴AE=DF,
∵∠B=60°,AC是对角线,
∴∠BAC=60°,
∴∠BAC=∠D=60°,
在△ACE与△DCF中,
AC=DC
∠BAC=∠D
AE=DF

∴△ACE≌△DCF,
∴EC=FC.∠ACE=∠DCF,
∵∠DCF+∠ACF=60°,
∴∠ACE+∠ACF=60°,
∴△ECF是等边三角形.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式