已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.(1)
已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.(1)求f(x)的解析式;(2)是否存在实数m,使得方程f(x...
已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.(1)求f(x)的解析式;(2)是否存在实数m,使得方程f(x)+37x=0在区间(m,m+1)内有且只有两个不等的实数根?若存在,求出m的取值范围;若不存在,说明理由.
展开
展开全部
(1)∵f(x)是二次函数,且f(x)<0的解集是(0,5),∴可设f(x)=ax(x-5)(a>0).
∴f(x)在区间[-1,4]上的最大值是f(-1)=6a.
由已知得6a=12,∴a=2,∴f(x)=2x(x-5)=2x2-10x(x∈R).
(2)方程f(x)+
=0等价于方程 2x3-10x2+37=0.
设h(x)=2x3-10x2+37,则h'(x)=6x2-20x=2x(3x-10).
在区间x∈(0,
)时,h'(x)<0,h(x)是减函数;
在区间(-∞,0),或(
,+∞)上,h'(x)>0,h(x)是增函数,故h(0)是极大值,h(
)是极小值.
∵h(3)=1>0,h(
)=?
<0,h(4)=5>0,
∴方程h(x)=0在区间(3,
),(
,4)内分别有惟一实数根,故函数h(x)在(3,4)内有2个零点.
而在区间(0,3),(4,+∞)内没有零点,在(-∞,0)上有唯一的零点.
画出函数h(x)的单调性和零点情况的简图,如图所示.
所以存在惟一的自然数m=3,使得方程f(x)+
=0在区间(m,m+1)内有且只有两个不同的实数根.
∴f(x)在区间[-1,4]上的最大值是f(-1)=6a.
由已知得6a=12,∴a=2,∴f(x)=2x(x-5)=2x2-10x(x∈R).
(2)方程f(x)+
37 |
x |
设h(x)=2x3-10x2+37,则h'(x)=6x2-20x=2x(3x-10).
在区间x∈(0,
10 |
3 |
在区间(-∞,0),或(
10 |
3 |
10 |
3 |
∵h(3)=1>0,h(
10 |
3 |
1 |
27 |
∴方程h(x)=0在区间(3,
10 |
3 |
10 |
3 |
而在区间(0,3),(4,+∞)内没有零点,在(-∞,0)上有唯一的零点.
画出函数h(x)的单调性和零点情况的简图,如图所示.
所以存在惟一的自然数m=3,使得方程f(x)+
37 |
x |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询