三角函数的题
若函数f(x)=sinωx+√3cosωx,x∈R,又f(α)=-2.f(β)=0,且|α-β|的最小值等于3π/4,则正数ω的值为多少...
若函数f(x)=sinωx+√3cosωx,x∈R,又f(α)=-2.f(β)=0,且|α-β|的最小值等于3π/4,则正数ω的值为多少
展开
2个回答
展开全部
f(x)=sin^2ωx+√3sinωxcosωx
=(2sin^2ωx -1)/2 +(√3/2)·2sinωxcosωx +1/2
= (-1/2)·cos(2ωx) +(√3/2)·sin(2ωx) +1/2
= cos(2π/3)·cos(2ωx) + sin(2π/3)·sin(2ωx) +1/2
= cos(2ωx - 2π/3) +1/2
f(α)=-1/2
→cos(2ωα - 2π/3)=-1;
2ωα - 2π/3 = (2k1+1)π;
f(β)=1/2
→cos(2ωβ - 2π/3)=0;
2ωβ - 2π/3 = k2 π + π/2;
则
2ωα - 2ωβ = (2k1 - k2) π + π/2;
→2ω·|α-β| = (2k1 - k2) π + π/2;
|α-β|≥3π/4,则
2ω≤4[(2k1 - k2) π + π/2]/(3π)
=[4(2k1 - k2) +2]/3
ω≤[2(2k1 - k2) +1]/3
取k1 = k2 =1,
则可知ω=1.
=(2sin^2ωx -1)/2 +(√3/2)·2sinωxcosωx +1/2
= (-1/2)·cos(2ωx) +(√3/2)·sin(2ωx) +1/2
= cos(2π/3)·cos(2ωx) + sin(2π/3)·sin(2ωx) +1/2
= cos(2ωx - 2π/3) +1/2
f(α)=-1/2
→cos(2ωα - 2π/3)=-1;
2ωα - 2π/3 = (2k1+1)π;
f(β)=1/2
→cos(2ωβ - 2π/3)=0;
2ωβ - 2π/3 = k2 π + π/2;
则
2ωα - 2ωβ = (2k1 - k2) π + π/2;
→2ω·|α-β| = (2k1 - k2) π + π/2;
|α-β|≥3π/4,则
2ω≤4[(2k1 - k2) π + π/2]/(3π)
=[4(2k1 - k2) +2]/3
ω≤[2(2k1 - k2) +1]/3
取k1 = k2 =1,
则可知ω=1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询