已知y=f(x)为R上的连续可导的函数,当x≠0时,f′(x)+f(x)x>0,则关于x的方程f(x)+1x=0的根的个数为

已知y=f(x)为R上的连续可导的函数,当x≠0时,f′(x)+f(x)x>0,则关于x的方程f(x)+1x=0的根的个数为()A.0B.1C.2D.0或2... 已知y=f(x)为R上的连续可导的函数,当x≠0时,f′(x)+f(x)x>0,则关于x的方程f(x)+1x=0的根的个数为(  )A.0B.1C.2D.0或2 展开
 我来答
手机用户09426
2014-12-25 · 超过54用户采纳过TA的回答
知道答主
回答量:109
采纳率:0%
帮助的人:104万
展开全部
∵当x≠0时,f(x)+
f(x)
x
>0

xf′(x)+f(x)
x
>0

要求关于x的方程f(x)+
1
x
=0
的根的个数可转化成xf(x)+1=0的根的个数
令F(x)=xf(x)+1
当x>0时,xf′(x)+f(x)>0即F′(x)>0,∴F(x)在(0,+∞)上单调递增
当x<0时,xf′(x)+f(x)<0即F′(x)<0,∴F(x)在(-∞,0)上单调递减
而y=f(x)为R上的连续可导的函数
∴xf(x)+1=0无实数根
故选A.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式