如图所示,在倾角为θ的斜面上,轻质弹簧一端与斜面底端固定,另一端与质量为M的平板A连接,一个质量为m
如图所示,在倾角为θ的斜面上,轻质弹簧一端与斜面底端固定,另一端与质量为M的平板A连接,一个质量为m的物体B靠在平板的右侧,A、B与斜面的动摩擦因数均为μ.开始时用手按住...
如图所示,在倾角为θ的斜面上,轻质弹簧一端与斜面底端固定,另一端与质量为M的平板A连接,一个质量为m的物体B靠在平板的右侧,A、B与斜面的动摩擦因数均为μ.开始时用手按住物体B使弹簧处于压缩状态,现放手,使A和B一起沿斜面向上运动距离L时,A和B达到最大速度v.则以下说法正确的是( )A.A和B达到最大速度v时,弹簧是自然长度B.若运动过程中A和B能够分离,则A和B恰好分离时,二者加速度大小均为g(sinθ+μcosθ )C.从释放到A和B达到最大速度v的过程中.弹簧对A所做的功等于12mv2+MgLsinθ+μMgLcosθD.从释放到A和B达到最大速度v的过程中,B受到的合力对它做的功大于12mv2
展开
1个回答
展开全部
A:对物体B和平板A整体分析可知,A和B达到最大速度时应满足kx=(m+M)gsinθ+μ(m+M)gcosθ,说明弹簧仍处于压缩状态,所以A错误;
B:根据题意可知,A和B恰好分离时,弹簧正好恢复原长,对A和B整体由牛顿第二定律得:
(m+M)gsinθ+μ(m+M)gcosθ=(m+M)a,
解得:a=gsinθ+μgcosθ=g(sinθ+μcosθ),所以B正确;
C:对A从释放到速度达到最大的过程由动能定理可得:W弹-Mg(xm-x)sinθ-μMg(xm-x)cosθ-FN(xm-x)=
Mv2,
其中xm是弹簧压缩的最大长度,x是速度最大时弹簧压缩的长度,FN是B对A的压力大小,比较可知C错误;
D:对B从释放到A和B达到最大速度的过程由动能定理可得:W总=
mv2-0,即B受到的合力对它做的功等于
mv2,所以D错误;
故选:B.
B:根据题意可知,A和B恰好分离时,弹簧正好恢复原长,对A和B整体由牛顿第二定律得:
(m+M)gsinθ+μ(m+M)gcosθ=(m+M)a,
解得:a=gsinθ+μgcosθ=g(sinθ+μcosθ),所以B正确;
C:对A从释放到速度达到最大的过程由动能定理可得:W弹-Mg(xm-x)sinθ-μMg(xm-x)cosθ-FN(xm-x)=
1 |
2 |
其中xm是弹簧压缩的最大长度,x是速度最大时弹簧压缩的长度,FN是B对A的压力大小,比较可知C错误;
D:对B从释放到A和B达到最大速度的过程由动能定理可得:W总=
1 |
2 |
1 |
2 |
故选:B.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询