如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,交CD于K,交BC于E,F是BE上一点,且BF=CE,求
如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,交CD于K,交BC于E,F是BE上一点,且BF=CE,求证:FK∥AB....
如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,交CD于K,交BC于E,F是BE上一点,且BF=CE,求证:FK ∥ AB.
展开
1个回答
展开全部
证明:过点K作MK ∥ BC,
∵AE平分∠BAC,
∴∠BAE=∠CAE,
又∵∠ACB=90°,CD⊥AB,
∴∠BAE+∠DKA=∠CAE+∠CEA=90°,
∴∠DKA=∠CEA,
又∵∠DKA=∠CKE,
∴∠CEA=∠CKE,∴CE=CK,又CE=BF,
∴CK=BF(4分)
而MK ∥ BC,
∴∠B=∠AMK,
∴∠BCD+∠B=∠DCA+∠BCD=90°,
∴∠AMK=∠DCA,
在△AMK和△ACK中,
∴∠AMK=∠ACK,AK=AK,∠MAK=∠CAK,
∴△AMK≌△ACK,(4分)
∴CK=MK,
∴MK=BF,MK ∥ BF,
四边形BFKM是平行四边形,(2分)
∴FK ∥ AB.(2分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询