设向量组α1,α2,……αs能由向量组β1,β2,……βt线性表示为(α1,α2,……αs)=(β
设向量组α1,α2,……αs能由向量组β1,β2,……βt线性表示为(α1,α2,……αs)=(β1,β2,……βt)A,其中A为t×s矩阵,且β1,β2,……βt线性无...
设向量组α1,α2,……αs能由向量组β1,β2,……βt线性表示为(α1,α2,……αs)=(β1,β2,……βt)A,其中A为t×s矩阵,且β1,β2,……βt线性无关,证明:α1,α2,……αs线性无关的充分必要条件是R(A)=s
展开
展开全部
记B=(β1,β2,……βt),C=(α1,α2,……αs),则原等式方程可以表示为BA=C。取一s维纵向量x,有BAx=Cx,记Cx=y,亦是一个s维纵向量。另记s维纵向量z=Ax,那么有Bz=y。
·充分性:当r(C)=r(B)=s,那么方程Cx=y、Bz=y均有唯一解,即对于确定的z,方程Ax=z亦有唯一解,此时必有r(A)=s
·必要性:把充分性的证明翻回去即可,当r(A)=s,方程Ax=z有唯一解,即y=Bz唯一,即对于确定的y,方程Cx=y有唯一解,此时必有r(C)=s
·充分性:当r(C)=r(B)=s,那么方程Cx=y、Bz=y均有唯一解,即对于确定的z,方程Ax=z亦有唯一解,此时必有r(A)=s
·必要性:把充分性的证明翻回去即可,当r(A)=s,方程Ax=z有唯一解,即y=Bz唯一,即对于确定的y,方程Cx=y有唯一解,此时必有r(C)=s
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
放弃吧!这不是正常地球人会做的
追问
棒棒哒~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询