为什么偏导数存在不一定可微?
2015-04-16
展开全部
对于一元函数来说,可导和可微是等价的,而对多元函数来说,偏导数都存在,也保证不了可微性,这是因为偏导数仅仅是在特定方向上的函数变化率,它对函数在某一点附近的变化情况的描述是极不完整的.
1,偏导数存在且连续,则函数必可微!
2,可微必可导!
3,偏导存在与连续不存在任何关系
其几何意义是:z=f(x,y)在点(x0,y0)的全微分在几何上表示曲面在点(x0,y0,f(x0,y0))处切平面上点的竖坐标的增量!
1,偏导数存在且连续,则函数必可微!
2,可微必可导!
3,偏导存在与连续不存在任何关系
其几何意义是:z=f(x,y)在点(x0,y0)的全微分在几何上表示曲面在点(x0,y0,f(x0,y0))处切平面上点的竖坐标的增量!
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不一定连续
追问
算全微分不就是求两个偏导吗?
追答
不是一个意思 你自己再看看书 书上有原话
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
Yis
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
对于一元函数来说,可导和可微是等价的,而对多元函数来说,偏导数都存在,也保证不了可微性,这是因为偏导数仅仅是在特定方向上的函数变化率,它对函数在某一点附近的变化情况的描述是极不完整的。
1,偏导数存在且连续,则函数必可微!
2,可微必可导!
3,偏导存在与连续不存在任何关系
其几何意义是:z=f(x,y)在点(x0,y0)的全微分在几何上表示曲面在点(x0,y0,f(x0,y0))处切平面上点的竖坐标的增量!
主要全微分形式的不变性做题时候的应用。。。
希望能够帮助到你……
1,偏导数存在且连续,则函数必可微!
2,可微必可导!
3,偏导存在与连续不存在任何关系
其几何意义是:z=f(x,y)在点(x0,y0)的全微分在几何上表示曲面在点(x0,y0,f(x0,y0))处切平面上点的竖坐标的增量!
主要全微分形式的不变性做题时候的应用。。。
希望能够帮助到你……
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询