^(1+i)^i=e^(i*ln(1+i))
ln(1+i)=ln(1/√bai2+1/√2i)+ln(√2) = (π/4)i+1/2*ln(2)
i*ln(1+i) = -π/4 +1/2*ln(2) i
e^zhi (-π/4 +1/2*ln(2) i ) = e^(-π/4) * e^(1/2*ln(2) i )
= e^(-π/4) * ( cos(ln(2)/2) + i * sin(ln(2)/2) )
因此:
(1+i)^i 的实部 e^(-π/4) * cos(ln(2)/2) = 0.428829006
(1+i)^i 的虚部 e^(-π/4) * sin(ln(2)/2) = 0.154871752
扩展资料:
在实数域上定义二元有序对z=(a,b),并规定有序对之间有运算"+"、"×" (记z1=(a,b),z2=(c,d)):
z1 + z2=(a+c,b+d)
z1 × z2=(ac-bd,bc+ad)
容易验证,这样定义的有序对全体在有序对的加法和乘法下成一个域,并且对任何复数z,我们有
z=(a,b)=(a,0)+(0,1) × (b,0)
令f是从实数域到复数域的映射,f(a)=(a,0),则这个映射保持了实数域上的加法和乘法,因此实数域可以嵌入复数域中,可以视为复数域的子域。
参考资料来源:百度百科-复数