函数应用题
某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x(百台),其总成本为G(x)万台,其中固定成本为2万元,并且每生产100台的生产成本为1万元(...
某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x(百台),其总成本为G(x)万台,其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)满足:
R(x)={-0.4x的平方+4.2x-0.8 (0小于等于x小于等于5)
{10.2 (x>5)
假定该产品销售平衡(利润=销售收入-总成本),那么根据上述统计规律。(1)要使工厂有盈利,产品x盈控制在什么范围?(2)工厂生产多少台产品时盈利最大?并求此时每台产品的售价为多少? 展开
R(x)={-0.4x的平方+4.2x-0.8 (0小于等于x小于等于5)
{10.2 (x>5)
假定该产品销售平衡(利润=销售收入-总成本),那么根据上述统计规律。(1)要使工厂有盈利,产品x盈控制在什么范围?(2)工厂生产多少台产品时盈利最大?并求此时每台产品的售价为多少? 展开
1个回答
展开全部
L(x)=利润=销售收入-成本=R(x)-(x)-2 【本题中,x的单位为百台】
一、因R(x)是分段函数,则需要讨论下。
1、若0≤x≤5,则只需要L(x)>0即可,得:
-0.4x²+4.2x-0.8-x-2>0 解得:1<x<7,即:0≤x≤5时满足;
2、若x>5,则L(x)>0等价于:10.2-x-2>0,得:x<8.2
总结:当0≤x<8.2时,工厂有盈利。
二、继续类似上题的分类讨论。
1、当0≤x≤5时,L(x)=-0.4x²+3.2x-2.8=-(0,4)(x-4)²+3.6
所以当x=4时,L(x)的最大值是3.6万元
2、若x>5,则L(x)=10.2-x-2=8.2-x,此时L(x)的最大值是当x=5时取得的,是3.2万元【取不到】
总结:当x=4时,利润最大,最大是3.6万元。
一、因R(x)是分段函数,则需要讨论下。
1、若0≤x≤5,则只需要L(x)>0即可,得:
-0.4x²+4.2x-0.8-x-2>0 解得:1<x<7,即:0≤x≤5时满足;
2、若x>5,则L(x)>0等价于:10.2-x-2>0,得:x<8.2
总结:当0≤x<8.2时,工厂有盈利。
二、继续类似上题的分类讨论。
1、当0≤x≤5时,L(x)=-0.4x²+3.2x-2.8=-(0,4)(x-4)²+3.6
所以当x=4时,L(x)的最大值是3.6万元
2、若x>5,则L(x)=10.2-x-2=8.2-x,此时L(x)的最大值是当x=5时取得的,是3.2万元【取不到】
总结:当x=4时,利润最大,最大是3.6万元。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询